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Abstract

Aim: The objective of this study was to evaluate a machine learning model to identify 
periodontitis patients and their cultivable subgingival microbial features.

Methods: We analyzed the composition of the subgingival microbiota in health, gingi-
vitis and periodontitis using machine learning. A total of 1026 microbiological records 
comprising 73 healthy, 205 gingivitis and 748 periodontitis culture samples were ana-
lyzed for associated important features and patterns of clustering.

Results: The most frequent microorganism was Fusobacterium spp. followed by Prevotel-
la intermedia/nigrescens, Porphyromonas gingivalis, Eikenella corrodens, Tannerella 
forsythia, enteric rods and Aggregatibacter actinomycetemcomitans. The frequency of 
these microorganisms was higher in periodontitis (p≤0.05). The machine learning algo-
rithm efficiently distinguished between health and periodontitis with good performance. 
Age, P. gingivalis, Fusobacterium spp. and P. intermedia had a high and positive impact 
on the prediction of periodontitis cases followed by the presence of A. actinomycetem-
comitans, T. forsythia and P. micra. There was a discernible increase in the cultivable 
subgingival microbiota counts from healthy to gingivitis and to periodontitis.

Conclusions: Machine learning was able to discriminate between health and periodon-
titis with good performance. In addition, P. gingivalis, Fusobacterium spp. and P. inter-
media were important determinants in the prediction of periodontitis cases.
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Introduction
The periodontitis associated subgingival biofilm is 
dominated by gram-negative anaerobic rods and spiro-
chetes, followed by facultative rods (van Winkelhof et 
al., 2016). Of these, only few microorganisms that are 
cultivable, have been strongly associated with periodon-
titis which include Porphyromonas gingivalis, Tannerella 
forsythia, Treponema denticola, Aggregatibacter acti-
nomycetemcomitans, Fusobacterium nucleatum and 
Prevotella species (Mdala et al., 2013, Marín et al., 2019). 

Other microorganisms of clinical relevance recov-
ered from subgingival biofilm include Eikenella cor-
rodens, Selenomonas sputigena, Treponema socranskii, 
Campylobacter rectus, Capnocytophaga spp., Dialister 
pneumosintes and Parvimonas micra have been also asso-
ciated with periodontitis (Heller et al., 2011, Hiranmayi 
et al., 2017, Pardo-Castaño et al., 2020). In addition, 
non-oral resident gram-negative facultative rods, such as 
Enterobacteriaceae, Pseudomonaceae and Acinetobacter, 
have been recovered in high proportions from subgin-
gival samples from periodontitis lesions as compared to 
healthy subjects (Botero et al., 2007, van Winkelhoff et 
al., 2016). In contrast, bacteria of the genera Actinomyces 
and Streptococcus have been associated with periodontal 

Correspondence to: Javier Enrique Botero
E-mail: drjavo@yahoo.com



2 Journal of the International Academy of Periodontology (2022) 24/1: 1-14

health (Feres et al., 2021). In recent years, next genera-
tion sequencing studies revealed that microorganisms of 
the genera Porphyromonas, Treponema, Fusobacterium, 
Tannerella and Filifactor are present in higher propor-
tions in periodontitis. Furthermore, these periodontal 
pathogens are significantly reduced by periodontal ther-
apy, and this is associated with a good clinical response. 
In fact, high throughput molecular microbial studies not 
only expanded the knowledge of the diversity of the sub-
gingival microbiota but confirmed the clinical relevance 
of classic periodontal pathogens that were studied by 
culture and checkerboard DNA-DNA hybridization in 
suppression studies (Feres et al., 2021).

It is estimated that only 50% of the microorganisms 
that reside in different niches in the mouth are cultiva-
ble (Harper-Owen et al., 1999). Recent efforts in pro-
moting culture-based analyses by Lagier et al. (2017), 
termed ¨culturomics¨, have expanded the repertoire of 
cultured microorganisms including amoeba and giant 
viruses. They reported the culture of 329 new bacterial 
species and 327 isolated for the first time from human 
samples (Lagier et al., 2017). Recently, high throughput 
molecular microbial analyses have allowed the study of 
the oral microbiome exposing a high degree of microbial 
diversity (Carda-Diéguez et al., 2019, Feres et al., 2021). 
Nevertheless, these modern molecular techniques do 
not offer consistent proof of microbial viability and de-
pending on the platform of analysis, PCR bias, data error 
and expensive / extensive bioinformatics analyses may 
result in significant limitations and yet, our current ap-
proach for treating periodontitis patients is still the same 
(Rezasoltani et al., 2020, Feres et al., 2021). In the bio-
medical field, microbial culture is considered the ¨gold 
standard¨ for the detection of clinically relevant patho-
gens and its association with the clinical diagnosis of 
certain diseases such as bacterial meningitis (Laupland 
and Valiquette 2013). Several advantages of bacterial 
culture over molecular techniques are that it allows for 
the recovery of viable cells which are a source for anti-
microbial testing, complete subtyping, expression of an-
tigens and further genomic analysis (Teles et al., 2013). 
Therefore, culture-based analyses are complementary to 
high throughput molecular methods for the study of the 
human subgingival microbiota. 

Machine learning is a method of data analysis that 
involves the study of computer algorithms that im-
prove automatically with experience. Machine learning 
creates mathematical models with the information ex-
tracted from the dataset (training data) and then makes 
predictions or decisions without being programmed to 
do. This form of data analysis has been used to solve 
different problems in the biomedical field including 
metagenomics, taxonomic profiling, and gene predic-
tion (Chen et al., 2018). To the extent of our knowl-
edge, machine learning analysis has not been used to 

study the cultivable subgingival microbiota in peri-
odontitis patients. Therefore, the objective of this study 
was to evaluate a machine learning model to identify 
periodontitis patients and their cultivable subgingival 
microbial features.

Materials and Methods
Study design and sample
A retrospective analysis of the results from subgingival 
microbial cultures from periodontitis, gingivitis and 
healthy patients was carried out between 2003-2019. 
The databases from two oral microbiology laboratories, 
Universidad del Valle (Cali-Colombia) and Universidad 
de Antioquia (Medellín-Colombia), were screened for 
the inclusion criteria for healthy, gingivitis and peri-
odontitis subjects. These laboratories serve as reference 
centers for their respective dental school clinics that pro-
vide health services to the community. The study was ap-
proved by the institutional review board (18-2019) and 
conducted according to the Declaration of Helsinki of 
1975, as revised in 2013.

Selection criteria
The identification of potential results was based on the 
reported diagnosis at the time of subgingival sampling 
registered in the database. The healthy group included all 
results identified as healthy subjects with probing depths 
≤3mm, no periodontal attachment loss and no bleeding 
on probing at sampled sites. The gingivitis group in-
cluded all diagnoses reported as marginal gingivitis and 
plaque induced gingivitis and presented probing depths 
≤3mm with positive bleeding on probing but no peri-
odontal attachment loss at sampled sites. The periodonti-
tis group included all forms of used terms within the date 
range which included: adult periodontitis, chronic peri-
odontitis, aggressive periodontitis, juvenile periodon-
titis, rapidly progressing periodontitis, and refractory 
periodontitis. Periodontitis patients presented at least 2 
non-adjacent sampled pockets depths ≥5 mm, positive 
bleeding on probing and periodontal attachment loss. 
All other forms of diagnosis such as endodontic lesions, 
abscesses, peri-implant lesions, osteomyelitis, and nec-
rotizing forms of periodontal disease were excluded. All 
reports that included saliva samples from healthy, gingi-
vitis and periodontitis subjects or were incomplete, were 
also excluded from the analysis.

Microbial detection
Microbial detection was performed by means of an-
aerobic cultures of subgingival plaque samples as de-
scribed by Botero et al. (2007) and Martínez-Pabon et 
al. (2010). Briefly, subgingival plaque samples from the 
5 deepest sites were taken using sterile paper points in-
serted to the bottom of the sulcus / pocket for 30 sec-
onds and pooled in a vial containing Viability Medium 
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Figure 1. Workflow of machine learning steps and analysis. The algorithm development comprised 3 stages: 
(I) preprocessing, (II) modelling and (III) evaluation.

Götenborg Anaerobical (VMGA) III transport medi-
um. All samples were processed within 24 hours and in-
cubated in CO2 using TSBV agar (trypticase-soy with se-
rum, bacitracin, and vancomycin) as selective media for 
A. actinomycetemcomitans, and in anaerobic culture jars 
using Brucella blood agar (supplemented with 5% defi-
brinated sheep blood, hemin and K1 vitamin). Microbial 
identification of Campylobacter spp., Eubacterium spp., 
Fusobacterium spp., Capnocytophaga spp., D. pneumosin-
tes, A. actinomycetemcomitans, P. gingivalis, Prevotella 
intermedia/nigrescens, Prevotella melaninogenica, T. for-
sythia, P. micra and E. corrodens were based on colony 
morphology and using standard biochemical tests (cata-
lase, CAAM, 4-Methylumbelliferyl-β-D Glucuronide) 
and commercial micromethod system (RapID ANA 
II, Remel, Norcross, GA). Gram-negative enteric rods 
were subcultured and colony purified on MacConkey 
and cetrimide agar plates and identified using a stan-
dardized biochemical test (API 20E, BioMerieux, 
Marcy l’Etoile, France).

Since the data for this study was retrieved from two 
laboratories, it was tabulated separately due to different 
quantification strategies. The total viable counts were enu-
merated and expressed either as a percentage or colony 
forming units (CFU) in Cali and Medellín, respectively.

Data analysis
Age, sex (male, female), diagnosis (healthy, gingivitis, 
periodontitis) and microbial culture detection infor-
mation were collected. The first analysis approach was 
to present the information using conventional statisti-
cal tests. Age is presented as the mean (95% confidence 
interval) and differences were determined with the 

ANOVA test. Counts of each microorganism were con-
verted to dichotomic results (+/-) and the frequency de-
tection established. Categorical variables were analyzed 
with the chi2 test. Differences were considered statistical-
ly significant when p≤0.05. All analyses were conducted 
in a statistical software (IBM Corp. IBM SPSS Statistics 
for Windows, Version 26.0. Armonk, NY: IBM Corp).

The second analysis approach involved machine 
learning models (Figure 1). The problem was cast as a 
classification problem among different classes and the 
data science cycle comprised three main standard stages: 
(I) preprocessing, (II) modelling and (III) evaluation, 
each of which are discussed below.

(I) Preprocessing: Since there were no missing values 
in the dataset, there was no need for implementing any 
imputation methodology. The dataset was unbalanced 
(few samples for two classes); however, based on the 
clinical criterion, no data augmentation methodology 
was implemented. For the data exploration phase, the 
dataset was normalized according to the standard scaler 
methodology implemented in the Scikit Learn Library 
(Scikit) and projected onto a two-dimensional manifold 
on the basis of the Uniform Manifold Approximation 
and Projection (UMAP) dimension reduction meth-
odology and the Density-Based Spatial Clustering of 
Applications with Noise Algorithm segmentation meth-
odology (DBSCAN). Since classes were unbalanced, 
the classification problem was designed to distinguish 
among healthy and not healthy patients. The index of the 
cluster obtained by means of the DBSCAN methodolo-
gy was utilized as an additional variable in the dataset for 
the classification problem, albeit no quantifiable impact 
of the results was observed (Figure 1).
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(II) Modeling: The uncertainty on which classifica-
tion methodologies should be implemented was reduced 
by means of the TPOT Auto Machine Learning Library 
(TPOT) which, once a figure-of-merit is defined, pro-
vides the best methodology (among all the one imple-
mented in the Scikit Learn Library) and its best param-
eters for a particular dataset. For the present case, the 
selected figure-of-merit was the macro recall (average of 
recall per class). According to the TPOT Library, the best 
data processing pipeline was: exported_pipeline = make_
pipeline (StackingEstimator(estimator=GaussianNB()), 
PolynomialFeatures(degree=2, include_bias=False, in-
teraction_only=False), BernoulliNB(alpha=0.1, fit_pri-
or=True)).

(III) Evaluation: To evaluate the performance of the 
model, the cross-validation methodology implemented 
in the Scikit Learn Library was utilized and presented in 
receiver operating characteristics (ROC) curves (Figure 
1). Then, a tree-explainer was used to compute local ex-
planations (SHapley Additive exPlanations-SHAP val-
ues) based on the associated features from each case. The 
mean absolute SHAP values were calculated, and the 
overall feature importance presented in a graph. For a fi-
nal analysis, to determine patterns in the composition of 
the subgingival microbiota, clustering methods, super-
vised learning, and model interpretability were applied 

using Uniform Manifold Approximation and Projection 
(UMAP) and Density-Based Spatial Clustering of 
Applications with Noise Algorithm (DBSCAN) cluster-
ing analysis. Python 3.9.5 was used for machine learning 
modeling and analysis.

Results
A total of 1725 reports were screened, and 1026 subgin-
gival samples were considered for analysis after exclusions. 
Of these, 73 (7.11%) healthy 748, 205 (19.9%) gingivitis 
and (73%) were periodontitis subjects. Healthy and gingi-
vitis subjects were significantly younger than periodontitis 
subjects (mean age 40.5 years old) and the majority were 
female in each group (p≤0.05). Fewer than 3% of subjects 
in each group reported smoking (Table 1).

The most frequent microorganism was Fusobacterium 
spp. followed by P. intermedia/nigrescens, P. gingivalis, 
E. corrodens, T. forsythia, enteric rods and A. actino-
mycetemcomitans. In the same manner, the frequency 
of these microorganisms was lower in healthy subjects, 
increased in gingivitis and presented the highest val-
ues in periodontitis subjects (p≤0.05). In contrast, the 
frequency detection of Campylobacter spp., P. micra, 
Eubacterium spp., D. pneumosintes, yeasts, β-hemolyt-
ic streptococci, P. melaninogenica and Capnocytophaga 
spp. were similar between groups (Table 2).

Table 2. Frequency detection of cultured microorganisms.

Variable Healthy Gingivitis Periodontitis p value

Number of subjects 73 205 748 NA

Age; mean (95% CI) 28.6 (26.5-30.6) 29.1 (26.8-31.3) 40.5 (39.4-41.7) a**

Sex
Female 45 (61.6%) 179 (87.3%) 500 (66.8%)

b***
Male 28 (38.4%) 26 (12.4%) 248 (33.2%)

Table 1. Demographic characteristics of the study sample

NA: not applicable. NS: not significant. (a) ANOVA test. (b) Chi2. ***p≤0.0001. p**≤0.001. p*≤0.05.

NS: not significant. (a) Chi2. (b) Frequency detection calculated on the available samples where indicated. ***p≤0.0001. p**≤0.001. p*≤0.05.

Microorganism Healthy Gingivitis Periodontitis p value

Fusobacterium spp. 25 (34.2%) 133 (64.8%) 593 (79.2%) a***

P. intermedia/nigrescens 9 (12.3%) 77 (37.5%) 408 (54.5%) a***

P. gingivalis 1 (1.36%) 61 (29.7%) 405 (54.1%) a***

E. corrodens 6 (8.21%) 50 (24.3%) 219 (29.2%) a**

T. forsythia 5 (6.84%) 23 (11.2%) 195 (26.0%) a***

Enteric rods 10 (13.6%) 22 (10.7%) 160 (21.3%) a*

A. actinomycetemcomitans 2 (2.73%) 29 (14.1%) 127 (16.9%) a*

Campylobacter spp. 10 (13.6%) 37 (18.04%) 118 (15.7%) NS

P. micra 7 (9.58%) 27 (13.1%) 104 (13.9%) NS

Eubacterium spp. 3/43 (6.9%) b 25/171 (14.6%) b 112/619 (18.0%) b NS

D. pneumosintes 0/43 b 25/171 (14.6%) b 91/619 (14.7%) b NS

Yeasts 1/43 (2.32%) b 24/171 (14.03%) b 73/619 (11.7%) b NS

β-Hemolytic streptococci 1/43 (2.32%) b 6/171 (3.5%) b 25/619 (4.03%) b NS

P. melaninogenica 0/30 b 2/34 (5.8%) b 5/129 (3.8%) b NS

Capnocytophaga spp. 0/30 b 5/34 (14.7%) b 5/129 (3.8%) b NS
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Figure 2. Confusion matrix for the prediction of periodontitis and healthy cases. After the algorithm was deployed 
it was able to discriminate with good performance between healthy cases (84.6%) and periodontitis (89.2%).

Figure 2 shows the confusion matrix from the algo-
rithm training used in machine learning. We trained 
the model to classify the cases into healthy and peri-
odontitis according to the demographic and microbial 
variables (frequency). Gingivitis cases were not consid-
ered in the model due to its similarity with periodon-
titis in terms of the variables. After the algorithm was 
deployed, it was able to discriminate with good perfor-
mance between healthy cases (84.6%) and periodonti-
tis (89.2%). The distinction of healthy cases was lower 
than periodontitis because the number of samples from 
healthy individuals was very limited. Furthermore, af-
ter the algorithm was trained, it was tested with several 
subsamples which yielded a good performance for the 
classification of healthy and periodontitis cases (AUC 
0.94 ± 0.00; Figure 3). Gingivitis cases were excluded 
from the analysis since the prediction algorithm was 
not able to differentiate them from periodontitis cases. 
Important features that help predict periodontitis are 

presented in Figures 4 and 5. After the prediction al-
gorithm was modeled, trained, tested, and applied to 
the sample, SHAP Values (SHapley Additive exPlana-
tions) were calculated to describe the prediction made 
by the machine and assess the impact of important 
features. The y-axis indicates the variable name and in 
order of importance from top to bottom. The x-axis in-
dicates the SHAP value with positive or negative asso-
ciations. The color indicates the value of the analyzed 
feature (variable) as high or low. SHAP values for age, 
P. gingivalis, Fusobacterium spp. and P. intermedia had 
a high and positive impact on the prediction of peri-
odontitis cases followed by the presence of A. actino-
mycetemcomitans, T. forsythia and P. micra. This means 
that the higher the age and counts of these microor-
ganisms, the higher the association with periodontitis. 
The opposite occurred for healthy cases, in which the 
age and counts of microorganisms were lower, and this 
had a high association with health.
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Figure 3. Receiver operating characteristic analysis of the algorithm used in machine learning. After the algorithm 
was trained, it was tested with several subsamples which yielded a good performance for the classification of 
healthy and periodontitis cases (AUC 0.94 ± 0.00).

The composition of the subgingival microbiota 
from healthy, gingivitis and periodontitis individuals 
are depicted in supplementary material 1. There is a 
discernible difference in the areas corresponding to an 
increase in the cultivable subgingival microbiota from 
healthy to gingivitis and to periodontitis. While gin-
givitis and periodontitis showed similar microbiotas, 
the proportions of P. gingivalis, P. intermedia, T. for-
sythia, E. corrodens and D. pneumosintes were higher 
in periodontitis subjects. Fusobacterium spp., P. micra 
and enteric rods were in similar proportions in all 
groups. The transition from health to gingivitis and 
then to periodontitis was characterized by increasing 
counts of P. gingivalis while D. pneumosintes was ex-
clusive of gingivitis and periodontitis cases.

The DBSCAN returned 3 valid clusters based on the 
similarities between the subgingival microbial profiles 
of the subjects included in each cluster (supplementary 
material 2, 3 and 4). The highest density cluster (cluster 

2) included 4.4% of healthy, 26.2% of gingivitis and 
69.4% of periodontitis subjects. Then followed cluster 
0 which contained 7.5% of healthy, 7% of gingivitis 
and 85.5% of periodontitis subjects. The lowest density 
cluster (cluster 1) comprised 4.5% of healthy, 8.6% of 
gingivitis and 86.9% of periodontitis subjects. The sub-
gingival microbial profile of cluster 2 was composed by 
higher counts of Fusobacterium spp (4.9%), P. gingivalis 
(3.1%), P. intermedia (3%) and T. forsythia (1%). Cluster 
0 presented a subgingival microbial profile composed by 
Fusobacterium spp (3.8%), P. intermedia (3.3%), enter-
ic rods (2.7%), P. gingivalis (2.4%) and D. pneumosintes 
(1%). In contrast, the subgingival microbial profile of 
cluster 1 was dominated by the highest counts of enteric 
rods (67.5%) followed by Fusobacterium spp. (2%) and 
P. gingivalis (1.6%) (supplementary material 4).

P. gingivalis, T. forsythia and P. intermedia were 
considered the independent variables in the model 
and the effect on other microorganisms was studied in 
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Figure 4. Feature analysis of the prediction of periodontitis cases. SHAP: SHapley Additive exPlanations.

Figure 5. Feature analysis of the prediction of healthy cases. SHAP: SHapley Additive exPlanations.
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periodontitis samples (supplementary material 5, 6 and 
7). The most abundant microorganisms in terms of cul-
tured counts were P. gingivalis and P. intermedia when 
present together. It was observed that with increasing 
counts of P. gingivalis a decrease in the counts of P. inter-
media, E. corrodens and T. forsythia was observed (sup-
plementary material 5). Similarly, with increasing counts 
of T. forsythia, a decrease in the counts of P. gingivalis 
and P. intermedia occurred (supplementary material 6). 
In contrast, when P. intermedia counts increased, there 
was no clear pattern and was related with higher counts 
of P. gingivalis, T. forsythia and E. corrodens (supplemen-
tary material 7). A. actinomycetemcomitans counts were 
very low as compared to other microorganisms and no 
distinct association was observed.

Discussion
This study showed that machine learning was able to dis-
criminate health from periodontitis cases. In addition, 
the model was able to identify the most prominent mi-
crobial features of the cultivable subgingival microbiota 
that are relevant to health, gingivitis and periodontitis.

It has been previously confirmed that periodontitis 
increases with age (Billings et al., 2018). In this study, 
healthy and gingivitis patients were significantly young-
er than periodontitis patients (mean age 40.5 years old). 
Age is not a risk factor by itself for periodontitis, but 
rather signifies the natural history of individuals, a his-
tory that include variable susceptibility and exposures to 
multiple etiological factors. However, periodontitis can 
occur at any age and this just illustrate the complexity of 
periodontal disease. During our analyses, age was an im-
portant feature for the prediction of periodontitis by the 
machine and this agrees with current knowledge of peri-
odontal disease (Billings et al., 2018). Interesting was 
the finding that the machine was not able to distinguish 
gingivitis from periodontitis based on the microbiology 
even though gingivitis subjects were significantly young-
er. This may reflect the transition that the subgingival 
environment is going through during the development 
of periodontal disease. Pathological and microbiological 
changes that occur during gingivitis mark the establish-
ment of periodontal disease that are necessary for the 
progression to periodontitis. However, not all cases of 
gingivitis result in periodontitis due to the multifacto-
rial nature of the disease. On the other hand, pathogens 
such as P. gingivalis, A. actinomycetemcomitans and T. for-
sythia are rarely detected in young periodontally healthy 
individuals, even with molecular detection techniques 
(Lombardo et al., 2021). Changes in lifestyle determi-
nants, oral hygiene, and plaque retentive factors through 
life influence shifts in the subgingival microbiota from 
health to gingivitis and then to periodontitis.

The microbial features of health and periodonti-
tis were analyzed. First, a frequency detection analysis 

determined which microorganisms were more prevalent 
in each condition. Then, a machine learning algorithm 
was trained to identify healthy and periodontitis cas-
es based on the features provided. As a result, the ma-
chine was able to distinguish healthy and periodontitis 
cases with good performance. A previous study by Kim 
et al. (2020) found similar prediction accuracy in saliva 
samples using the copy numbers of nine pathogens. In 
contrast, gingivitis cases were not easily distinguished 
from periodontitis cases by the machine and perhaps 
represents the continuum from health to disease in the 
subgingival microbial environment. The outcome deter-
mined that in addition to higher age, the most important 
microbiological features for periodontitis subjects were 
increasing counts of P. gingivalis, Fusobacterium spp. and 
P. intermedia. Although the counts of A. actinomycetem-
comitans, T. forsythia and P. micra were important in the 
prediction model, their association was lower but still 
predictive of periodontitis. In contrast, healthy subjects 
were significantly younger, and the subgingival microbi-
ota was readily identifiable by the machine by low counts 
and frequency. Previous culture-based studies showed 
comparable results (Sato et al., 1993).

This is the first study that attempts to analyze the 
profiles of the cultured subgingival microbiota in peri-
odontitis using machine learning. Clustering algorithms 
play an important role in machine learning applications. 
Any clustering method is an algorithm capable of divid-
ing the input data into subsets in such a way that data 
sharing some similarity is clustered together. Typically, 
clustering methods are extensively used in unlabeled 
datasets to find associations in the input data. This fea-
ture is also useful in scenarios where few labeled samples 
are available. Using a clustering algorithm, a particular 
tag is assigned to each cluster. Such tags are used to help a 
supervised algorithm in finding an appropriate decision 
boundary in a classification task. Furthermore, to apply 
a cluster-then-label approach, it is necessary to perform 
a dimensionality reduction of the dataset. Most cluster-
ing algorithms depend on a metric measure, points be-
longing to a particular cluster are “close” in terms of such 
measure. In high dimensional spaces, the problem of di-
mensionality makes the concept of proximity not qual-
itatively meaningful (Aggarwal et al., 2001). To  over-
come such difficulty, several dimensionality reduction 
methods are used in machine learning tasks and can be 
divided into two main categories (McInnes et al., 2018): 
1) preservation of local distances, and 2) preservation of 
global distances. In the first category, algorithms such as 
multiple correspondence analysis (MCA) or the prin-
cipal component analysis (PCA) are widely used. Both 
methods generate projections into a set of axes that pre-
serves the variance in the original dataset. In the second 
category, T-distributed Stochastic Neighbor Embedding 
(t-SNE) and Uniform Manifold Approximation and 
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Projection (UMAP), are state of the art algorithms for 
dimensionality reduction, preserving the global struc-
ture of the original dataset, showing high performance 
in several supervised and unsupervised tasks (McInnes 
et al., 2018, Maaten and Hinton 2008). The motiva-
tion of using a cluster-then-label approach is to imprint 
features that can help to improve the performance of a 
machine learning classifier by considering relationships 
in the abundance of certain pathogens of the subgingi-
val microbiota. In the case of the subgingival microbi-
ota, this imbalance can lead to different inflammatory 
changes in the periodontal tissues. To perform this goal, 
the dimensionality reduction is performed on the entire 
dataset, without the diagnosis information. The final 
stage of the cluster-then-label approach is the choos-
ing of a clustering algorithm. In the case of the present 
work, a density-based approach, the Density-Based 
Spatial Clustering of Applications with Noise Algorithm 
(DBSCAN) was used due to the resilience in presence 
of noisy data (Campello et al., 2013). The  DBSCAN 
algorithm returned 3 clusters that presented similari-
ties in the subgingival microbiota. While the highest 
density cluster consisted mainly of periodontal patho-
gens Fusobacterium spp., P. gingivalis, P. intermedia and 
T. forsythia in most periodontitis patients, the lowest 
density cluster was dominated by the highest levels of 
enteric rods and only presented in a small group of sub-
jects with periodontitis and few healthy subjects which 
is a rare finding. Fusobacterium spp. has been shown to 
play an important coaggregation role for the coloniza-
tion of P.  gingivalis and T. forsythia (Saito et al., 2008, 
Thurnheer et al., 2019). In addition, studies have shown 
higher frequency and counts of uncommon subgingi-
val microorganisms such as enteric rods in periodonti-
tis patients that complement the dysbiotic oral ecology 
(Chen et al., 1997, Herrera et al., 2008, Ranganathan et 
al., 2017). It is possible that the presence of high counts 
of enteric rods represent a transitory colonization in dif-
ferent oral surfaces such as saliva, tongue, and oral muco-
sa. Our clustering analysis showed that similar patterns 
of subgingival periodontal pathogens colonization can 
occur in some healthy, gingivitis and periodontitis sub-
jects, indicating that the simple presence of periodontal 
pathogens does not necessarily mean periodontitis and 
in turn, shows how complex the interactions between 
the biofilm (i.e.: co-aggregation, microbial succession) 
and host (i.e.: immune response, smoking) are for the 
clinical development of periodontitis (Teles et al., 2013). 
However, the difference between health and periodonti-
tis was clearly determined by the clustering algorithm by 
the increase in the proportions of the identified species, 
which is in agreement with previous studies (Abusleme et 
al., 2013). The classic role of P. gingivalis, Fusobacterium 
spp., T. forsythia and P. intermedia in periodontitis was 
further corroborated by our results. 

A shift in the microbial counts and frequency 
from health to disease was identified by the machine. 
Inflammatory changes that occur within periodontal 
tissues in response to an imbalance in the subgingival 
microbiota results in the formation of the periodontal 
pocket (Meuric et al., 2017). This clinical feature has 
been associated with changes in the subgingival micro-
biota and therefore have an impact on the cultivable 
counts (Pérez-Chaparro et al., 2018). Although a cor-
relation between probing depth and cultivable counts 
was not determined, periodontitis patients by selection 
had increased probing depths (>5mm) as compared to 
healthy samples (<3mm) and therefore suggest an al-
tered subgingival environment. The definition of a cul-
tivable healthy and disease microbiota is still difficult. 
Further microbiological studies are required for a better 
understanding of the subgingival microbiota and its rela-
tionship with the host.

This study presented a novel approach to the anal-
ysis of the culturable subgingival microbiota. But it is 
important to understand that the main limitation of 
culture-based analysis is the number of microorganisms 
that can be studied as compared to high-throughput ge-
nomic methods. Consequently, diversity was limited, 
and it only focused on the most cultured subgingival 
microorganisms including the most recognized peri-
odontal pathogens and enteric rods which are not com-
monly analyzed in high-throughput genomic methods. 
Nonetheless, machine learning analysis showed that 
with a limited group of microorganisms, it was possible 
to make associations between clusters of microorgan-
isms and periodontitis based on the most prominent 
features and subgingival microbial profiles. The results 
are comparable to previous studies (Pérez-Chaparro et 
al., 2018) and highlight the usefulness of culture-based 
approaches to study the implications of the subgingival 
microbiota in periodontitis.

This study has some limitations. Since it was a retro-
spective study of samples from patients with diverse peri-
odontal conditions, it used the data stored in each labora-
tory. This information was restricted to identification of 
the patient, diagnosis, microbial identification, and sam-
pled sites clinical parameters. Therefore, complete peri-
odontal parameters regarding stage/grade of periodonti-
tis, known risk factors such as diabetes and smoking were 
not available. Future prospective studies using machine 
learning that include greater demographic, microbiolog-
ical and clinical variables would produce a more experi-
enced model that could help explain the interactions be-
tween the microbiota and the host. The next step would 
be the use of artificial intelligence to develop systems that 
accurately predict the risk of periodontitis and response to 
therapy based on these interactions. This could have great 
implications in the development of chair-side tests for the 
early detection of patients at risk. 
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Conclusions
Machine learning was able to discriminate between 
health and periodontitis with good performance. In ad-
dition, P. gingivalis, Fusobacterium spp. and P. intermedia 
were important determinants in the prediction of peri-
odontitis cases. Culture-based analysis of the subgingi-
val microbiota could help identify individuals at risk of 
developing periodontitis and remains essential for the 
study of the subgingival microbiota.
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Supplementary material 1. Mean bacterial counts from healthy, gingivitis and periodontitis cases. There is a 
discernible difference in the areas corresponding to an increase in the subgingival microbiota from healthy to 
gingivitis and to periodontitis.

Supplementary material 2. Density-Based Spatial Clustering of Applications with Noise Algorithm (DBSCAN). 
Three clusters were identified based on the similarities of the composition of the subgingival microbiota.
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Supplementary material 3. Number of healthy, gingivitis and periodontitis subjects according to DBSCAN 
clustering analysis.

Supplementary material 4. Radar plot of identified subgingival profiles by dimensional reduction analysis and 
similarity. The DBSCAN (Density-Based Spatial Clustering of Applications with Noise Algorithm) returned 3 
valid clusters based on the similarities between the subgingival microbial profiles of the subjects included in 
each cluster.

Cluster 0 Cluster 1 Cluster 2

Healthy 17 (7.5%) 1 (4.5%) 25 (4.4%)

Gingivitis 16 (7.0%) 2 (8.6%) 153 (26.2%)

Periodontitis 194 (85.5%) 20 (86.9%) 405 (69.4%)

DBSCAN: Density-Based Spatial Clustering of Applications with Noise Algorithm.
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Supplementary material 5. Relationship 
of P. gingivalis with other periodontal 
pathogens. Counts of P. gingivalis 
were considered the independent 
variable in the model and the effect on 
other microorganisms was studied in 
periodontitis samples.

Supplementary material 6. Relationship 
of T. forsythia with other periodontal 
pathogens. Counts of T. forsythia 
were considered the independent 
variable in the model and the effect on 
other microorganisms was studied in 
periodontitis samples.

Supplementary material 7. Relationship 
of P. intermedia with other periodontal 
pathogens. Counts of P. intermedia 
were considered the independent 
variable in the model and the effect on 
other microorganisms was studied in 
periodontitis samples.


